Abstract

The magnetocaloric effect and specific heat capacity of an aqueous suspension of samarium ferrite were determined calorimetrically over the temperature range 288–343 K in magnetic fields of 0–0.7 T. The data obtained were used to calculate changes in the magnetic component of the molar heat capacity and entropy of the magnetic phase and changes in the enthalpy of the process under an applied magnetic field. The magnetocaloric effect was found to increase nonlinearly as the magnetic field induction grew. The corresponding temperature dependences contained a maximum at 313 K related to the second-order magnetic phase transition at the Curie point. The field and temperature dependences of heat capacity contained a maximum in fields of 0.4 T and a minimum at the magnetic phase transition temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call