Abstract

We study the Bernstein–Landau paradox in the collisionless motion of an electrostatic plasma in the presence of a constant external magnetic field. The Bernstein–Landau paradox consists in that in the presence of the magnetic field, the electric field and the charge density fluctuation have an oscillatory behavior in time. This is radically different from Landau damping, in the case without magnetic field, where the electric field tends to zero for large times. We consider this problem from a new point of view. Instead of analyzing the linear magnetized Vlasov–Poisson system, as it is usually done, we study the linear magnetized Vlasov–Ampère system. We formulate the magnetized Vlasov–Ampère system as a Schrödinger equation with a selfadjoint magnetized Vlasov–Ampère operator in the Hilbert space of states with finite energy. The magnetized Vlasov–Ampère operator has a complete set of orthonormal eigenfunctions, that include the Bernstein modes. The expansion of the solution of the magnetized Vlasov–Ampère system in the eigenfunctions shows the oscillatory behavior in time. We prove the convergence of the expansion under optimal conditions, assuming only that the initial state has finite energy. This solves a problem that was recently posed in the literature. The Bernstein modes are not complete. To have a complete system it is necessary to add eigenfunctions that are associated with eigenvalues at all the integer multiples of the cyclotron frequency. These special plasma oscillations actually exist on their own, without the excitation of the other modes. In the limit when the magnetic fields goes to zero the spectrum of the magnetized Vlasov–Ampère operator changes drastically from pure point to absolutely continuous in the orthogonal complement to its kernel, due to a sharp change on its domain. This explains the Bernstein–Landau paradox. Furthermore, we present numerical simulations that illustrate the Bernstein–Landau paradox. In Appendix 2 we provide exact formulas for a family of time-independent solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.