Abstract
The structural, magnetic, and dielectric properties of the Y1−xHoxFe0.5Cr0.5O3 (x=0, 0.05, 0.1, 0.3, and 0.5) compounds have been investigated. Rietveld refinement of the XRD patterns shows that the compounds possess orthorhombic perovskite structure. The dual magnetization reversal is observed in the samples with x=0.05 and 0.1, and it vanishes when x≥0.3. Ferromagnetic-like behavior with large coercive fields is observed in all Ho3+ doped YFe0.5Cr0.5O3 samples, indicating a doping induced metamagnetic behavior. This abnormal magnetization behavior can be explained by the antiparallel magnetic coupling between the Ho3+ and the canted Cr3+/Fe3+ moments, as well as the Ho–O–Ho magnetic interaction. The dielectric behavior in the frequency range from 100Hz to 10MHz is investigated. The low doped samples (x=0, 0.05, and 0.1) exhibit relaxation-like dielectric behavior and colossal dielectric constant in a wide temperature and frequency range. The dual magnetization reversal under low magnetic field makes these materials attractive candidates for the magnetic dual sensor devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.