Abstract

Abstract We study the magnetic vortex dynamical behaviors in a confined off-centered nanocontact system through micromagnetic simulations. It is found that the vortex core could be pinned when the nanocontact is shifted to large enough distance from the center of the nanodisk. We also find that the position of nanocontact exerts great influence on the vortex core gyration, including trajectory, eigenfrequency, excitation time, and instantaneous velocity. The simulations show that it is possible to utilize the nanocontact position to change the total effective potential energy of the system so as to realize both the pinning of the vortex core and the controllability of vortex core gyration. The characteristic gyration in this system is advantageous to control the polarity switching and other dynamical behaviors of magnetic vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call