Abstract
Magnetic field fluctuations are observed in current-carrying stellarator plasmas when the rotational transform is close to a rational value at the edge of the plasma. At low plasma pressure, these fluctuations are associated with perturbed currents parallel to the equilibrium magnetic field lines. A model for these magnetohydrodynamic modes in a low-β, three-dimensional stellarator equilibria has been developed. A set of helical current filaments are constrained to mimic the structure of magnetic field lines on rational surfaces derived from three-dimensional (3D) equilibrium reconstructions. Transformation to straight field line coordinates then allows fitting of the poloidal magnetic sensor data to a single harmonic function, which fixes the modeled toroidal mode structure via the field line flow geometry. The developed procedure accurately captures phase and amplitude variation for m/n = 3/2, 3/1, and 4/1 modes in the 3D equilibria of the compact toroidal hybrid experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.