Abstract

Photographic-type magnetograms are used in conjunction with Hα filtergrams to study the structure and evolution of magnetic fields associated with arch filament systems. The magnetograms show that the opposite ends of the arch filaments are indeed rooted in photospheric magnetic fields of opposite polarity. Furthermore, these magnetic field systems are in every case new magnetic flux appearing at the solar surface. Time lapse studies show the detailed process by which the flux tubes emerge through the surface. First, supergranules bring individual strands of magnetic flux to the surface and sweep the two feet of the flux tube to opposite sides of the supergranule. Then, the flux tube rises through the chromosphere, creating a visible arch filament. It is also shown that the observed rotation of the axis of an arch filament system in the plane of the solar surface is caused by the emergence of successive flux loops, each possessing different axial tilts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call