Abstract

The `ribbons' of two-ribbon flares show complicated patterns reflecting the linkages of coronal magnetic field lines through the lower solar atmosphere. We describe the morphology of the EUV ribbons of the July 14, 2000 flare, as seen in SOHO, TRACE, and Yohkoh data, from this point of view. A successful co-alignment of the TRACE, SOHO/MDI and Yohkoh/HXT data has allowed us to locate the EUV ribbon positions on the underlying field to within ∼ 2′′, and thus to investigate the relationship between the ribbons and the field, and also the sites of electron precipitation. We have also made a determination of the longitudinal magnetic flux involved in the flare reconnection event, an important parameter in flare energetic considerations. There are several respects in which the observations differ from what would be expected in the commonly-adopted models for flares. Firstly, the flare ribbons differ in fine structure from the (line-of-sight) magnetic field patterns underlying them, apparently propagating through regions of very weak and probably mixed polarity. Secondly, the ribbons split or bifurcate. Thirdly, the amount of line-of-sight flux passed over by the ribbons in the negative and positive fields is not equal. Fourthly, the strongest hard X-ray sources are observed to originate in stronger field regions. Based on a comparison between HXT and EUV time-profiles we suggest that emission in the EUV ribbons is caused by electron bombardment of the lower atmosphere, supporting the hypothesis that flare ribbons map out the chromospheric footpoints of magnetic field lines newly linked by reconnection. We describe the interpretation of our observations within the standard model, and the implications for the distribution of magnetic fields in this active region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.