Abstract
Acenes, as a class of polycyclic aromatic hydrocarbons, attract considerable attention due to their remarkable nonlinear optical and magnetic properties. The aim of this work was the elucidation of the capability of radical-substituted acene derivatives to undergo spin-state-switching rearrangements. For this purpose, a series of acene-based (anthracene, pentacene, heptacene) molecules bearing fluorenyl and tert-butyl-nitroxyl radicals were investigated through comprehensive quantum chemical modeling of their electronic structures, isomerization and magnetic properties. A possible mechanism of the transformation of the closed-shell folded isomer into the biradical twisted structure of the bis-fluorenyl anthracene has been ascertained by applying the procedure of searching for the Minimum Energy Crossing Point. The conditions favoring the occurrence of spin-state-switching in such classes of polycyclic aromatic hydrocarbon derivatives have been formulated. By varying the size of an acene core and the type of radical substituent, the compounds capable of changing their magnetic properties have been revealed. Considering the unique features of radical-bearing acene-based derivatives, the proposed molecules can be used as functional materials in photonics and electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.