Abstract

We analyze observations of the compact GHZ-peaked-spectrum radio source in the nucleus of the weakly active galaxy NGC 1052, assuming that the low-frequency turnover in its spectrum is due to synchrotron self-absorption. The analysis is based on a model for an inhomogeneous source of synchrotron radiation. It is shown that the magnetic field is not uniform, but the change in the field strength from the center to the edge of the compact radio source does not exceed an order of magnitude. The maximum magnetic-field strength in the nucleus of NGC 1052 is 20 G < H⊥ < 200 G, and the density of relativistic electrons is 0.018 cm−3 < ne < 0.18 cm−3 on scales of 0.1 pc; everywhere in the radio source, the energy density of the magnetic field exceeds the energy density of the relativistic electrons. The physical conditions are similar to those in the nuclei of the nearby radio galaxies 3C 111 and 3C 465, and differ strongly from those in the nucleus of the radio galaxy 0108+388, which is a compact GHz-peaked-spectrum source (these three galaxies were studied by the authors earlier using the same method).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call