Abstract

The general context of this paper is the study of magnetic fields in the pre-main sequence intermediate mass Herbig Ae/Be stars. Magnetic fields are likely to play an important role in pre-main sequence evolution at these masses, in particular in controlling the gains and losses of stellar angular momentum. The particular aim of this paper is to announce the detection of a structured magnetic field in the Herbig Ae star HD 190073, and to discuss various scenarii for the geometry of the star, its environment and its magnetic field. We have used the ESPaDOnS spectropolarimeter at CFHT in 2005 and 2006 to obtain high-resolution and signal-to-noise circular polarization spectra which demonstrate unambiguously the presence of a magnetic field in the photosphere of this star. Nine circular polarization spectra were obtained, each one showing a clear Zeeman signature. This signature is suggestive of a magnetic field structured on large scales. The signature, which corresponds to a longitudinal magnetic field of 74+- 10 G, does not vary detectably on a one-year timeframe, indicating either an azimuthally symmetric field, a zero inclination angle between the rotation axis and the line of sight, or a very long rotation period. The optical spectrum of HD 190073 exhibits a large number of emission lines. We discuss the formation of these emission lines in the framework of a model involving a turbulent heated region at the base of the stellar wind, possibly powered by magnetic accretion. This magnetic detection brings an important element for our understanding of stellar magnetism at intermediate masses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call