Abstract

We present 850 μm thermal dust polarization observations with a resolution of 14.″4 (∼0.13 pc) toward an infrared dark cloud G16.96+0.27 using James Clerk Maxwell Telescope/POL-2. The average magnetic field orientation, which roughly agrees with the larger-scale magnetic field orientation traced by the Planck 353 GHz data, is approximately perpendicular to the filament structure. The estimated plane-of-sky magnetic field strength is ∼96 μG and ∼60 μG using two variants of the Davis–Chandrasekhar–Fermi methods. We calculate the virial and magnetic critical parameters to evaluate the relative importance of gravity, the magnetic field, and turbulence. The magnetic field and turbulence are both weaker than gravity, but magnetic fields and turbulence together are equal to gravity, suggesting that G16.96+0.27 is in a quasi-equilibrium state. The alignment between the magnetic field and cloud is found to have a trend moving away from perpendicularity in the dense regions, which may serve as a tracer of potential fragmentation in such quiescent filaments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.