Abstract

The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of 'Clebsch variables' for the hydrodynamical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.