Abstract

Abstract This study presents a quantitative evaluation of the simulated Madden–Julian oscillation (MJO) in an ensemble of 42 experiments performed with ECHAM6 and previous ECHAM versions. The ECHAM6 experiments differ in their parameter settings, resolution, and whether the atmosphere is coupled to an ocean or not. The analysis concentrates on a few basic features of the MJO, namely, the signatures of convection/precipitation coupled with the circulation system and the eastward propagation strength of outgoing longwave radiation (OLR) and 850- and 200-hPa zonal winds within the MJO-related frequency–wavenumber range. It also examines whether precipitation and OLR show similar signatures in the MJO as simulated by ECHAM. The experiments reveal an MJO, however, to different degrees and in different aspects, so that a sound assessment requires a multivariate approach. In particular, the convective rainfall signatures are decoupled from the dynamic signature of the MJO in the simulations herein, which eventually leads to the introduction of a new MJO diagram and metric that incorporate OLR and the zonal winds in 850 and 200 hPa. The analysis here confirms the importance of the convection scheme: only with the Nordeng modifications to the Tiedtke scheme can realistic MJO features be simulated. High-resolution coupled experiments better represent the MJO as compared to low-resolution AMIP experiments. This is shown to follow from two more general findings, namely, that 1) air–sea interaction mainly increases the convective signature and 2) increased resolution enhances eastward propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.