Abstract

Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses.

Highlights

  • Amebiasis is caused by the protozoan parasite Entamoeba histolytica (Eh) and is estimated to affect approximately 50 million people worldwide [1]

  • The protozoan parasite Entamoeba histolytica can establish an enteric infection in human hosts that leads to symptoms ranging from diarrhea to abscesses in the liver and the brain

  • We have shown that macrophages only secrete IL-1β upon direct contact with Eh [16, 29] that was dependent on initial adhesion by Eh Gal-lectin and engagement of macrophage α5β1 integrin by Eh cysteine protease 5 (EhCP-A5) RGD sequences that activated the NLRP3 inflammasome

Read more

Summary

Introduction

Amebiasis is caused by the protozoan parasite Entamoeba histolytica (Eh) and is estimated to affect approximately 50 million people worldwide [1]. It is a major cause of mortality and morbidity, in children of developing countries. EhCP-A5 is expressed on the cell surface, EhCP-A2 localizes to the internal and external cell membrane and EhCP-A1 localizes to intracellular vesicles [20,21,22] These CPs have been shown to play a role in the pathogenesis of amebiasis [20, 23,24,25]. As these CPs are required for Eh life cycle and are key virulence factors, they represent attractive pharmaceutical targets [26]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call