Abstract
Turing’s (Proceedings of the London Mathematical Society 42:230–265, 1936) paper on computable numbers has played its role in underpinning different perspectives on the world of information. On the one hand, it encourages a digital ontology, with a perceived flatness of computational structure comprehensively hosting causality at the physical level and beyond. On the other (the main point of Turing’s paper), it can give an insight into the way in which higher order information arises and leads to loss of computational control—while demonstrating how the control can be re-established, in special circumstances, via suitable type reductions. We examine the classical computational framework more closely than is usual, drawing out lessons for the wider application of information–theoretical approaches to characterizing the real world. The problem which arises across a range of contexts is the characterizing of the balance of power between the complexity of informational structure (with emergence, chaos, randomness and ‘big data’ prominently on the scene) and the means available (simulation, codes, statistical sampling, human intuition, semantic constructs) to bring this information back into the computational fold. We proceed via appropriate mathematical modelling to a more coherent view of the computational structure of information, relevant to a wide spectrum of areas of investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.