Abstract

In this manuscript a recent topology on the positive integers generated by the collection of {σn:n∈N} where σn:={m:gcd⁡(n,m)=1} is generalized over integral domains. Some of its topological properties are studied. Properties of this topology on infinite principal ideal domains that are not fields are also explored, and a new topological proof of the infinitude of prime elements is obtained (assuming the set of units is finite or not open), different from those presented in the style of H. Furstenberg. Finally, some problems are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.