Abstract

Riemerella anatipestifer is one of the most economically important pathogens of farm ducks worldwide. However, the molecular mechanisms regarding its antigenicity and pathogenicity are poorly understood. We previously constructed a library of random Tn4351 transposon mutants using R. anatipestifer strain CH3. In this study, M949_1556 gene inactivated mutant strain CH3ΔM949_1556 was identified by screening of the library using monoclonal antibody against R. anatipestifer serotype 1 lipopolysaccharide (LPS) (anti-LPS MAb) followed by sequence analysis. The mutant strain presented no reactivity to the anti-LPS MAb in an indirect ELISA. Animal studies showed that the median lethal dose (LD50) of CH3ΔM949_1556 was >1010 colony forming units (CFU), which was attenuated more than 50 times, compared with that of wild-type strain CH3 (LD50=2×108CFU). The bacterial loads in the blood of CH3ΔM949_1556 infected ducks were significantly decreased, compared with those of CH3-infected ducks. In addition, CH3ΔM949_1556 presented significant, higher susceptibility to complement-dependent killing than CH3 did in vitro. Furthermore, CH3ΔM949_1556 showed increased bacterial adhesion and invasion capacities to Vero cells. Immunization with CH3ΔM949_1556-inactived vaccine was effective in protecting the ducks from challenge with R. anatipestifer serotype 1 strain WJ4, serotype 2 strain Yb2 and serotype 10 strain HXb2, suggesting that the mutant strain CH3ΔM949_1556 could provide a broad cross-protection among R. anatipestifer serotypes 1, 2 and 10 strains. Our results demonstrated that the M949_1556 gene plays a role on the bacterial antigenicity and pathogenicity of R. anatipestifer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call