Abstract

Purpose. This study aims to establish an electronic wheelchair system in Taiwan that conforms to multiple master–multiple slave (M3S) standards. The proposed system could enhance the safety and convenience of people with disabilities.Material and method. The M3S-based head-controlled electric wheelchair consists of three parts: (A) the input device, (B) the output device, and (C) the safety device. Head movement can be used as the input control to cause the tilting device to produce a corresponding level of analog voltage (backward & forward/left & right) which is then transmitted to the analogy/digital conversion module to control the output device (wheelchair's motor). Ten subjects with C5 uncompleted spinal cord injury were recruited in the clinical assessment. They were randomly assigned into groups A and B. In the group A, the subjects were assigned to operate the head-controlled wheelchair system with M3S standard before operating the head-controlled wheelchair system without M3S standard. In the group B, the subjects were assigned to operate the head-controlled wheelchair system without M3S standard before operating the head-controlled wheelchair system with M3S standard. Two subjects in the group B drop off due to their personal reasons.Results. The time cost for group A in completing tasks 1, 2, and 3 with the M3S and without the M3S were insignificant (p > 0.05). The time cost for completing in group B was insignificant (p > 0.05). Thus, the wheelchair operating time is depended on the proficiency of the subjects, not the M3S standard added.Discussions and conclusions. The time cost for subjects to operate the wheelchair was determined by their proficiency, not the M3S standard control added to the system. However, the M3S-based system did realize the safety mechanism and complex auxiliary tools with and without the plug-in and play function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.