Abstract

Abstract The leading role of a special function of the Wright-type, referred to as M-Wright or Mainardi function, within a parametric class of self-similar stochastic processes with stationary increments, is surveyed. This class of processes, known as generalized grey Brownian motion, provides models for both fast and slow anomalous diffusion. In view of a subordination-type formula involving M-Wright functions, these processes emerge to have all finite moments and be uniquely defined by their mean and auto-covariance structure like Gaussian processes. The corresponding master equation is shown to be a fractional differential equation in the Erdélyi-Kober sense and the diffusive process is named Erdélyi-Kober fractional diffusion. In Appendix, an historical overview on the M-Wright function is reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.