Abstract

We apply the Lynden-Bell and Katz (LK) definition of gravitational energy to static and spherically symmetric space-times which admit a curvature singularity. These are the Tolman V, Tolman VI and the interior Schwarzschild solutions, the latter with the boundary limit of 9/8th of the gravitational radius. We show that the LK definition can still be applied to these solutions despite the presence of a singularity which nonetheless appears to carry no energy in the LK sense. While in the solutions that we mentioned the KL gravitational energy is positive definite everywhere in space time, this is not the case for the overcharged Reissner-Nordstrom space-time. In the latter case in fact the LK energy density becomes negative sufficiently close to the singularity hence we use the positivity criterion to impose a more stringent limit of validity to the Reissner-Nordstrom solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call