Abstract

We show that the integrated Lyapunov exponents of C1 volume-preserving diffeomorphisms are simultaneously continuous at a given diffeomorphism only if the corresponding Oseledets splitting is trivial (all Lyapunov exponents are equal to zero) or else dominated (uniform hyperbolicity in the projective bundle) almost everywhere. We deduce a sharp dichotomy for generic volume-preserving diffeomorphisms on any compact manifold: almost every orbit either is projectively hyperbolic or has all Lyapunov exponents equal to zero. Similarly, for a residual subset of all C1 symplectic diffeomorphisms on any compact manifold, either the diffeomorphism is Anosov or almost every point has zero as a Lyapunov exponent, with multiplicity at least 2. Finally, given any set S ?? GL(d) satisfying an accessibility condition, for a residual subset of all continuous S-valued cocycles over any measure-preserving homeomorphism of a compact space, the Oseledets splitting is either dominated or trivial. The condition on S is satisfied for most common matrix groups and also for matrices that arise from discrete Schr?Nodinger operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.