Abstract

Lipoprotein metabolism in the central nervous system (CNS) is based on high-density lipoprotein-like particles that use apoE as their predominant apolipoprotein rather than apoA-I. Although apoA-I is not expressed in astrocytes and microglia, which produce CNS apoE, apoA-I is reported to be expressed in porcine brain capillary endothelial cells and also crosses the blood–brain barrier (BBB). These mechanisms allow apoA-I to reach concentrations in cerebrospinal fluid (CSF) that are approximately 0.5% of its plasma levels. Recently, apoA-I has been shown to enhance cognitive function and reduce cerebrovascular amyloid deposition in Alzheimer's Disease (AD) mice, raising questions about the regulation and function of apoA-I in the CNS. Peripheral apoA-I metabolism is highly influenced by ABCA1, but less is known about how ABCA1 regulates CNS apoA-I. We report that ABCA1 deficiency leads to greater retention of apoA-I in the CNS than in the periphery. Additionally, treatment of symptomatic AD mice with GW3965, an LXR agonist that stimulates ABCA1 expression, increases apoA-I more dramatically in the CNS compared to the periphery. Furthermore, GW3965-mediated up-regulation of CNS apoA-I is independent of ABCA1. Our results suggest that apoA-I may be regulated by distinct mechanisms on either side of the BBB and that apoA-I may serve to integrate peripheral and CNS lipid metabolism. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945–2010).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.