Abstract

BackgroundThe luxury effect describes the positive relationship between affluence and organism diversity or activity in urban ecosystems. Driven by human activities, the luxury effect can potentially be found at a broader scale across different landscapes. Previously, the luxury effect relationship has been established within a city for two bat species, the red bat (Lasiurus borealis) and the evening bat (Nycticeius humeralis). We examined landscape-scale patterns of bat activity distribution—using empirical data for seven bat species for the luxury effect. We also identified bat-land cover associations for each species. Across North Carolina, USA, we used the mobile transect survey protocol of the North American Monitoring Program to record bat activity at 43 sites from 2015 to 2018. We collected land cover and income data at our transect locations to construct generalized linear mixed models to identify bat-land cover and bat-income relationships.ResultsWe found that across landscapes, activity of the red bat and the evening bat was positively correlated to income independent of land cover, consistent with previous single-city results. We found a negative relationship between hoary bat (Lasiurus cinereus) activity and income. All seven species had specific land cover associations. Additionally, we found a positive interaction term between income and evergreen forest for the red bat and a positive interaction term between income and woody wetland for hoary bat.ConclusionsOur results demonstrated that the luxury effect is an ecological pattern that can be found at a broad spatial scale across different landscapes. We highlight the need for multi-scale ecology studies to identify the mechanism(s) underlying the luxury effect and that the luxury effect could cause inequity in how people receive the ecosystem services provided by bats.

Highlights

  • The luxury effect describes the positive relationship between affluence and organism diversity or activity in urban ecosystems

  • Between 2015 and 2018, we collected 10,899 bat passes that met identification criteria. From these bat passes we identified 805 passes of E. fuscus, 2609 passes of L. borealis, 158 passes of L. cinereus, 585 passes of L. noctivagans, 1857 passes of N. humeralis, 1016 passes of P. subflavus, and 350 passes of T. brasiliensis

  • In the post hoc modeling for L. borealis and N. humeralis, we examined interactions between income and land cover type that had a positive relationship on bat activity

Read more

Summary

Introduction

The luxury effect describes the positive relationship between affluence and organism diversity or activity in urban ecosystems. We collected land cover and income data at our transect locations to construct generalized linear mixed models to identify bat-land cover and bat-income relationships. The term “luxury effect” describes a functional relationship that links affluence and biodiversity in urban ecosystems [1]. Generally measured by median household income, predicts where people live and how people manage their property. These human activities directly affect the physical structure, microclimate, and vegetation of different parts of an urban area [8,9,10,11], which can impact animal distributions [12,13,14]. The core driver of the luxury effect is the difference in human activities caused by the socioeconomic differences

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call