Abstract

The harmful cosmic and solar radiation is the major challenge in constructing surface habitats on the Moon. Common solutions for protecting astronauts are to cover the base with a thick layer of regolith or place the habitat underground, in lava tubes. However, these approaches sacrifice the psychological well-being of astronauts by completely cutting off their connection to the outside environment. Therefore, the study was motivated by the need to develop a system of protection against radiation for a surface lunar base that would allow for the introduction of sunlight into the habitat. The objective was to discover a technical solution that would allow greater flexibility in designing the base shell structure, provide a translucent membrane, and guarantee the safety of astronauts. This paper discusses an approach to constructing lunar habitable structures based on soil reinforcement principles and biotechnology. The nano-cellulose membranes, grown in situ, are proposed as passive radiation shielding. Nano-cellulose is a light solid substance with exceptional strength and radiation protection characteristics. After certain processes, it becomes translucent, which is a big asset when considering the introduction of natural light to the habitat. Combined with lunar regolith, cellulose membranes form a composite system enabling the construction of stable vertical surface structures while minimizing material use and habitat footprint. Keywords: Space Architecture, Lunar Base, Radiation Protection, Biotechnology, Nano-cellulose

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.