Abstract
Pure and Al3+ doped ZnO nanopowders were studied by means of time-resolved luminescence spectroscopy. The powders were synthesized by hydrothermal and plasma methods. These powders were used as a raw material for vaporization-condensation process inside the Solar reactor. The commercially available ZnO nanopowder was studied for a comparison. Exciton to defect band luminescence intensity ratio was estimated in different types of ZnO nanopowders. It was found that nanopowders with whiskers morphology show superlinear luminescence intensity depending on excitation density. The observed effect depends on the average nanoparticle size and on the powder morphology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.