Abstract

We consider the fourth-order degenerate diffusion equation, in one space dimension. This equation, derived from a lubrication approximation, models the surface-tension-dominated motion of thin viscous films and spreading droplets [15]. The equation with f(h) = |h| also models a thin neck of fluid in the Hele-Shaw cell [10], [11], [23]. In such problems h(x,t) is the local thickness of the the film or neck. This paper considers the properties of weak solutions that are more relevant to the droplet problem than to Hele-Shaw. For simplicity we consider periodic boundary conditions with the interpretation of modeling a periodic array of droplets. We consider two problems: The first has initial data h0 ≥ 0 and f(h) = |h|n, 0 < n < 3. We show that there exists a weak nonnegative solution for all time. Also, we show that this solution becomes a strong positive solution after some finite time T*, and asymptotically approaches its means as t ∞. The weak solution is in the classical sense of distributions for 3/8 < n < 3 and in a weaker sense introduced in [1] for the remaining 0 < n ≤ 3/8. Furthermore, the solutions have high enough regularity to just include the unique source-type solutions [2] with zero slope at the edge of the support. They do not include any of the less regular solutions with positive slope at the edge of the support. Second, we consider strictly positive initial data h0 ≥ m > 0 and f(h) = |h|n, 0 < n < ∞. For this problem we show that even if a finite-time singularity of the form h 0 does occur, there exists a weak nonnegative solution for all time t. This weak solution becomes strong and positive again after some critical time T*. As in the first problem, we show that the solution approaches its mean as t ∞. The main technical idea is to introduce new classes of dissipative entropies to prove existence and higher regularity. We show that these entropies are related to norms of the difference between the solution and its mean to prove the relaxation result. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call