Abstract

Oocytes, eggs, and embryos from the frog Xenopus laevis have been an important model system for studying cell cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of maturation promoting factor (MPF), which is composed of cyclin B and cdc2. After fertilization, the early embryo undergoes rapid simplified cell cycles, which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatic-type cell cycle and have been used to study the balance between cell cycle and differentiation during development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.