Abstract
We consider Legendrian knots and links in the standard 3-dimensional contact space. In 1997 Chekanov [Ch] introduced a new invariant for these knots. At the same time, a similar construction was suggested by Eliashberg [E1] within the framework of his joing work with Hofer and Givernthal on Symplectic Field Theory ([E2],[EGH]). To a knot diagram, they associated a differential algebra A. Its stable isomorphism type is invariant under Legendrian isotopy of the knot. In this paper, we introduce an additional structure on this algebra in the case of a Legendrian link. For a link of N components, we show that its algebra splits A = ⊕g ∈ G Ag Here G is a free group on (N - 1) variables. The splitting is determined by the order of the knots and is preserved by the differential. It gives a tool to show that some permutations of link components are impossible to produce by Legendrian isotopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.