Abstract

An incident longitudinal, or transverse, plane wave is scattered by a bounded region immersed in an infinite isotropic and homogeneous elastic medium. The region could be either a rigid scatterer or a cavity. Integral representations for the total displacement field, as well as for the introduced spherical scattering amplitudes are given explicitely in a compact form. Representations for the scattering cross-section whenever the incident wave is a longitudinal or a transverse wave are also provided. Using Papkovich potentials and low-frequency techniques the scattering problems are reduced to an iterative sequence of potential problems which can be solved successively in terms of expansions in appropriate harmonic functions. In each one of the four cases (longitudinal and transverse incidence on rigid scatterer and cavity) the corresponding exterior boundary value problems that specify the approximations as well as the analytic expressions for the scattering amplitudes and the scattering cross-section are given explicitly. The leading low-frequency term of the scattering cross-section for a rigid scatterer is independent of the wave number while for the case of a cavity it is proportional to the fourth power of the wave number. The low-frequency limit of the displacement field which corresponds to the static problem when the scatterer is a cavity, does not depend on the geometrical characteristics of the scatterer and it is always a constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call