Abstract

Bulk chemical data indicate the Fern Creek Formation (Early Proterozoic, Marquette Range Supergroup, Lower Chocolay Group) originated as a glacial till, resolving an old argument about the correct interpretation for diamictite-containing units within the formation. There are poor correlations among SiO2, Al2O3, and K2O, and the chemical index of alteration averages 55. These are qualities characteristic of tills and other sediments accumulated in the absence of chemical weathering and transport-induced sorting and inconsistent with an origin as a fluvial deposit (the principal alternate hypothesis). The Archean Carney Lake Gneiss might be the source for at least the lower portions of the Fern Creek Formation. Compositions are similar, and rare earth element trends in the Fern Creek Formation are consistent with derivation from an Archean high-grade terrane. Pegmatites in the gneiss could be the source for monazite, huttonite, and an unnamed fluor-hydroxy-rare earth mineral that occurs in the midsection of the Fern Creek Formation. In addition, mineral and bulk chemical trends are consistent with models involving deep erosion of a complex Archean source, similar to models previously developed for Gowganda tills in the Huronian Supergroup. Samples of the Sturgeon River Quartzite occurring above the Fern Creek Formation were also analyzed. The bulk chemistry is consistent with a well-sorted, supermature quartz arenite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call