Abstract
The lower valley of Changjiang, from Wuhan of the Hubei Province in the west to Zhenjiang of the Jiangsu Province in the east, contains more than 200 polymetallic (Cu–Fe–Au, Mo, Zn, Pb, Ag) deposits and is one of the most important metallogenic belts in China. This metallogenic belt, situated at the northern margin of the Yangzi craton and bordered by the Dabieshan ultrahigh pressure metamorphic belt to the north, consists mainly of Cambrian–Triassic marine clastic sedimentary rocks and carbonate and evaporite rocks, which overlay a Precambrian basement and are intruded by Yanshanian (205 to 64 Ma) granitoid intrusions and subvolcanic complexes. Repeated tectonism from Late Proterozoic to Triassic resulted in extensively developed networks of faults and folds involving the Cambrian–Triassic sedimentary strata and the Precambrian basement. The Yanshanian granitoid intrusions and subvolcanic complexes in the Lower Changjiang metallogenic belt are characterized by whole-rock δ 18 O of +8‰ to +10‰, initial 87 Sr/ 86 Sr of 0.704 to 0.708, and ϵNd t from −10 to −17 and have been interpreted to have originated from mixing between juvenile mantle and old crustal materials. Also, the Yanshanian granitoids exhibit eastward younging and increase in alkalinity (i.e., from older calc–alkaline in the west to younger subalkaline–alkaline in the east), which are related to oblique collision between the Yangzi and Sino-Korean cratons and tectonic evolution from early compressional to late extensional or rifting regimes. Most polymetallic deposits in the Lower Changjiang metallogenic belt are clustered in seven districts where the Yanshanian magmatism is particularly extensive: from west to east, Edong, Jiurui, Anqing–Guichi, Luzhong, Tongling, Ningwu and Ningzhen. Mineralization is characterized by the occurrence of three distinct types of orebodies in individual deposits: orebodies in Yanshanian granitoid intrusions, skarn orebodies at the contact zones between the Yanshanian intrusions and Late Paleozoic–Early Mesozoic sedimentary rocks, and stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata. The most important host sedimentary strata are the Middle Carboniferous Huanglong Formation, Lower Permian and Lower–Middle Triassic carbonate and evaporite rocks. The intrusion-hosted and skarn orebodies exhibit well-developed zonation in alteration assemblages, metal contents, and isotopic compositions within individual deposits, and apparently formed from hydrothermal activities related to the Yanshanian magmatism. The stratabound massive sulfide orebodies in the Late Paleozoic–Early Mesozoic sedimentary strata have long been suggested to have formed from sedimentary or volcano-sedimentary exhalative processes in shallow marine environments. However, extensive research over the last 40 years failed to produce unequivocal evidence for syngenetic mineralization. On the basis of geological relationships and isotope geochemical characteristics, we propose a carbonate-hosted replacement deposit model for the genesis of these stratabound massive sulfide orebodies and associated skarn orebodies. This model suggests that epigenetic mineralization resulted from interactions between magmatic fluids evolved from the Yanshanian intrusions with carbonate and evaporite wall rocks. Mineralization was an integral but distal part of the larger hydrothermal systems that formed the proximal skarn orebodies at the contact zones and the intrusion-hosted orebodies. The stratabound massive sulfide deposits of the Lower Changjiang metallogenic belt share many features with the well-studied, high-temperature, carbonate-hosted replacement deposits of northern Mexico and western United States, particularly with respect to association with small, shallow granitoid complexes, structural and stratigraphic controls on mineralization, alteration assemblages, geometry of orebodies, metal association, metal zonation and isotopic systematics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.