Abstract
As low-carbon and sustainable manufacturing becomes the mainstream development direction of the current manufacturing industry, the traditional heavy industry manufacturing enterprises in China urgently need to transform. For the heavy cement equipment manufacturing enterprise investigated here, there is a large amount of energy waste during the manufacturing operation due to scheduling confusion. In particular, the multispeed, multi-function machining and the transportation of multiple automated guided vehicles (multi-AGV) are the main influencing factors. Therefore, this paper addresses a novel low-carbon scheduling optimization problem that integrated multispeed flexible manufacturing and multi-AGV transportation (LCSP-MSFM & MAGVT). First, a mixed-integer programming (MIP) model is established to minimize the comprehensive energy consumption and makespan in this problem. In the MIP model, a time-node model is built to describe the completion time per workpiece, and a comprehensive energy consumption model based on the operation process of the machine and the AGV is established. Then, a distribution algorithm with a low-carbon scheduling heuristic strategy (EDA-LSHS) is estimated to solve the proposed MIP model. In EDA-LSHS, the EDA with a novel probability model is used as the main algorithm, and the LSHS is presented to guide the search direction of the EDA. Finally, the optimization effect and actual performance of the proposed method are verified in a case study. The experimental results show that the application of the proposed method in actual production can save an average of 43.52% comprehensive energy consumption and 64.43% makespan, which effectively expands the low-carbon manufacturing capacity of the investigated enterprise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.