Abstract
Three-dimensional (3D) warp interlock woven composites (3DWIWC) are in demand in various industries due to their excellent delamination resistance, damage tolerance and fracture toughness properties. The 3D warp interlock woven fabric architecture can be defined by numerous fabric parameters such as: the binding and stuffer warp yarns, the woven pattern, the presence of yarn groups, etc. …. The effect of the fabric architecture on the impact behaviour of 3DWIWC made with carbon yarns has not been fully investigated. The binding warp yarns with the weave pattern play the main role in the arrangement of yarns within the final composite. In order to highlight their main influence, the 3D woven composites had been differentiated according to the main fabric architectural parameters, which are the angle and depth of binding warp yarn, presence of stuffer warp yarn and weave pattern of binding warp yarn. Afterward, their low velocity impact properties and damage mechanisms were examined. Thanks to the precise combination of these internal parameters of the fabric architecture, the contact force and absorbed energy values of 3DWIWC could be increased almost %50 and %15, respectively. Moreover, their damage mechanisms could be significantly improved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.