Abstract

Abstract α-titanium single crystals, containing three different amounts of interstitial impurities, have been tested in compression at temperatures between 77 and 700 K. The mechanical behaviour is characterized by a strong temperature dependence of the yield stress for slip on the primary prismatic slip plane (1010)[1210], a strong dependence of the critical resolved shear stress on the orientation of crystal axis and the failure of the Schmid law, an anomaly at temperatures between 300 and 500 K which is associated with cross-slip into a first-order pyramidal plane, and the occurrence of two hardening stages on the deformation curves at low temperatures. Both conventional and in situ transmission electron microscopy examinations revealed that a large lattice friction opposes the motion of a-type screw dislocations at temperatures below 550 K. Since edge dislocations are found to be highly mobile, it appears that, at low temperatures, the yield stress of pure α-titanium is governed by a Peierls force act...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.