Abstract

The lattice dynamics of Sb2Te3−xSex (x = 0, 0.6, 1.2, 1.8, 3) mixed crystals have been studied by a combination of low-temperature heat-capacity measurements between 2–300 K and first-principles calculations. The results from the experimental and theoretical investigations are in excellent agreement. While Sb2Se3 can be considered as a harmonic lattice oscillator in this temperature range, for the isostructural compounds Sb2Te3, Sb2Se0.6Te2.4, Sb2Se1.2Te1.8 and Sb2Se1.8Te1.2 (tetradymite structure type; Rm) a small anharmonic contribution to the total heat capacity has to be taken into account at temperatures above 250 K. For the compounds which crystallize in the tetradymite structure type the experimental and theoretical data show unambiguously that the exchange of Te by Se leads to an increase of the bonding polarity and consequently to a hardening of the bonding which is reflected in an increase of the Debye temperatures with increasing Se contents. In addition, our studies clearly demonstrate that the mixed crystals in the stability field of the tetradymite structure type are characterized by a strong non-ideal mixing behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.