Abstract

In the antiferromagnetic ground state, below TN ≃ 5.7 K, Ca2CoSi2O7 exhibits strong magnetoelectric coupling. For a symmetry-consistent theoretical description of this multiferroic phase, precise knowledge of its crystal structure is a prerequisite. Here we report the results of single-crystal neutron diffraction on Ca2CoSi2O7 at temperatures between 10 and 250 K. The low-temperature structure at 10 K was refined assuming twinning in the orthorhombic space group P2(1)2(1)2 with a 3 × 3 × 1 supercell [a = 23.52 (1), b = 23.52 (1), c = 5.030 (3) Å] compared with the high-temperature normal state [tetragonal space group P42(1)m, a = b ≃ 7.86, c ≃ 5.03 Å]. The precise structural parameters of Ca2CoSi2O7 at 10 K are presented and compared with the literature X-ray diffraction results at 130 and 170 K (low-temperature commensurate phase), as well as at ∼ 500 K (high-temperature normal phase).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.