Abstract

The knee meniscus and hip labrum appear to be important for joint health, but the mechanisms by which these structures perform their functions are not fully understood. The fluid phase of articular cartilage provides compressive stiffness and aids in maintaining a low friction articulation. Healthy fibrocartilage, the tissue of meniscus and labrum, has a lower fluid permeability than articular cartilage. In this study we hypothesized that an important function of the knee meniscus and the hip labrum is to augment fluid retention in the articular cartilage of a mechanically loaded joint. Axisymmetric hyperporoelastic finite element models were analyzed for an idealized knee and an idealized hip. The results indicate that the meniscus maintained fluid pressure and inhibited fluid exudation in knee articular cartilage. Similar, but smaller, effects were seen with the labrum in the hip. Increasing the fibrocartilage permeability relative to that of articular cartilage gave a consolidation rate and loss of fluid load support comparable to that predicted by meniscectomy or labrectomy. The reduced articular cartilage fluid pressure that was calculated for the joint periphery is consistent with patterns of endochondral ossification and osteophyte formation in knee and hip osteoarthritis. High articular central strains and loss of fluid load support after meniscectomy could lead to fibrillation. An intact low-permeability fibrocartilage is important for limiting fluid exudation from articular cartilage in the hip and knee. This may be an important aspect of the role of fibrocartilage in protecting these joints from osteoarthritis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call