Abstract

Three accessions of T. boeoticum were selected for the cloning and sequencing of novel low-molecular-weight glutenin subunit (LMW-GS) genes, based on the results of SDS-PAGE and PCR analyses of the LMW-GS diversity in A-genome wheat (Lee et al. 1998 a). A comparison of the nucleotide and deduced amino-acid sequences of three cloned genes, LMWG-E2, LMWG-E4 and LMWG-AQ1, both to each other and to other known LMW-GS genes was carried out. The N-terminal domains showed one variable position; GAG (coding for a glutamic acid) for the E-type, and GAT (coding for an aspartic acid) for the Q-type. The comparisons of the LMW-GSs in the literature and this paper define three different types of N-terminal sequences; METSCIPGLERPW and MDTSCIPGLERPW from the durum and A-genome wheats, and METRCIPGLERPW from the hexaploid and D-genome wheats. The repetitive domains were AC-rich at the nucleotide level and coded for a large number of glutamine residues; this region showed 16 variable positions changing 12 amino-acid residues, three triple nucleotide deletions/additions, a large deletion of 18 nucleotides in LMWG-E4 and a deletion of 12 nucleotides in LMWG-E2. In the C-terminal domains 26 variable positions were found and 12 of these mutations changed amino-acid residues; no deletions/ additions were present in this region. It was shown that the LMWG-E2 and LMWG-E4 genes could be expressed in bacteria and this allowed the respective protein products to be related back to the proteins defined as LMW-GSs in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call