Abstract

Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.

Highlights

  • Cell-to-cell communication is a fundamental requirement for cell proliferation in all multicellular organisms

  • Signal molecules secreted into the nutrient medium

  • by co-cultivated barley or wheat pistils are indispensible for the development of EPCs

Read more

Summary

Introduction

Cell-to-cell communication is a fundamental requirement for cell proliferation in all multicellular organisms. Plant compounds reminiscent of mitogens (a well-researched set of animal long-distance signaling compounds), or at least displaying signal transducer activity, have been identified. While some of these signaling molecules have proven to be small metabolites, others are polypeptides and other complex molecules. Peroxidases, or arabinogalactan proteins have all been shown to have a signaling function during embryogenesis, pollen tube differentiation and root development (De Jong et al, 1992; Van Engelen and de Vries, 1992; Wink, 1994; Willats and Knox, 1996).

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.