Abstract

The study of the reflection and transmission of low frequency SH waves incident upon a rough interface in an elastic plate is undertaken by employing a theory of acoustic wave scattering from rough surfaces originally due to Biot and subsequently generalised to the case of elastic media. In this theory the interface is replaced by a distribution of voids/asperities whose individual size is small compared to the excitation wavelength. We plot the absolute values of the reflection and transmission coefficients versus frequency when a single symmetric SH plate mode is used as the input excitation. The different types of inclusions are used to simulate the rough surface are the hollow, fluid filled and aluminum spheres. Lastly, the loss of energy due to scattering is also estimated for the different inclusion distributions considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.