Abstract

Abstract While the Advanced LIGO and Virgo gravitational-wave (GW) experiments now regularly observe binary black hole (BBH) mergers, the evolutionary origin of these events remains a mystery. Analysis of the BBH spin distribution may shed light on this mystery, offering a means of discriminating between different binary formation channels. Using the data from Advanced LIGO and Virgo’s first and second observing runs, here we seek to carefully characterize the distribution of effective spin among BBHs, hierarchically measuring the distribution’s mean μ and variance σ 2 while accounting for selection effects and degeneracies between spin and other black hole parameters. We demonstrate that the known population of BBHs have spins that are both small, with μ ≈ 0, and very narrowly distributed, with σ 2 ≤ 0.07 at 95% credibility. We then explore what these ensemble properties imply about the spins of individual BBH mergers, reanalyzing existing GW events with a population-informed prior on their effective spin. Under this analysis, the BBH GW170729, which previously excluded , is now consistent with zero effective spin at ∼10% credibility. More broadly, we find that uninformative spin priors generally yield overestimates for the effective spin magnitudes of compact binary mergers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.