Abstract

Biological soil crusts (BSCs) are typical covers in arid and semiarid regions. The dissolved organic matter (DOM) of BSCs can be transported to various aquatic ecosystems by rainfall-runoff processes. However, the spatiotemporal variation in quality and quantity of DOM in runoff remains unclear. Herein, four kinds of runoff plots covered by four successional stages of BSCs were set up on slopes, including bare runoff plot (BR), cyanobacteria crust covered runoff plot (CR), mixed crust covered runoff plot (MIR), and moss crust covered runoff plot (MOR). The quantity and quality of DOM in runoff during rainfall was investigated based on the stimulated rainfall experiments combined with optical spectroscopy and ultra-high resolution mass spectrometry analyses. The results showed that the DOM concentrations (i.e., 0.30 to 45.25 mg L−1) in runoff followed the pattern of MOR>MIR>CR>BR, and they were exponentially decreased with rainfall duration. The DOM loss rate of BR (8.26 to 11.64 %) was significantly greater than those of CR, MIR, and MOR (0.84 to 3.22 %). Highly unsaturated compounds (HUCs), unsaturated aliphatic compounds (UACs), saturated compounds (SCs), and peptide-like compounds (PLCs) were the dominated compounds of the water extractable DOM from the original soils. Thereinto, PLCs and UACs were more easily leached into runoff during rainfall. The relatively intensity of HUCs in runoff generally decreased with rainfall duration, while the relatively intensities of UACs, PLCs, and SCs slightly increased with rainfall duration. These findings suggested that the DOM loss rate was effectively decreased with the successional of BSCs during rainfall; meanwhile, some labile compounds (e.g., PLCs and UACs) were transported into various aquatic ecosystems by rainfall-runoff processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call