Abstract

Existing analytical solutions for the long-time chronoamperometric current response at an inlaid disk electrode are restricted to diffusion-limited currents due to extreme polarisation or reversible kinetics at the electrode surface. In this article, we derive an approximate analytical solution for the long-time-dependent current when the kinetics of the redox reaction at the electrode surface are quasi-reversible and the diffusion coefficients of the oxidant and reductant are different. We also detail a novel method for calculating the steady-state current. We show that our new method encapsulates and extends the existing solutions, and agrees with numerically simulated currents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.