Abstract
We describe numerical tools for the stability analysis of extrasolar planetary systems. In par- ticular, we consider the relative Poincare variables and symplectic integration of the equations of motion. We apply the tangent map to derive a numerically efficient algorithm of the fast indicator Mean Exponential Growth factor of Nearby Orbits (MEGNO), a measure of the maximal Lyapunov exponent, that helps to distinguish chaotic and regular configurations. The results concerning the three-planet extrasolar system HD 37124 are presented and discussed. The best-fitting solutions found in earlier works are studied more closely. The system involves Jovian planets with similar masses. The orbits have moderate eccentricities, nevertheless the best-fitting solutions are found in dynamically active region of the phase space. The long-term stability of the system is determined by a net of low-order two-body and three-body mean mo- tion resonances. In particular, the three-body resonances may induce strong chaos that leads to self-destruction of the system after Myr of apparently stable and bounded evolution. In such a case, numerically efficient dynamical maps are useful to resolve the fine structure of the phase space and to identify the sources of unstable behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.