Abstract
The object of study is a soft random geometric graph with vertices given by a Poisson point process on a line and edges between vertices present with probability that has a polynomial decay in the distance between them. Various aspects of such models related to connectivity structures have been studied extensively. In this article, we study the random graph from the perspective of extreme value theory and focus on the occurrence of single long edges. The model we investigate has non-periodic boundary and is parameterized by a positive constant α, which is the power for the polynomial decay of the probabilities determining the presence of an edge. As a main result, we provide a precise description of the magnitude of the longest edge in terms of asymptotic behavior in distribution. Thereby we illustrate a crucial dependence on the power α and we recover a phase transition which coincides with exactly the same phases in Benjamini and Berger[ 2 ].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.