Abstract

The Korteweg-de Vries equation, Boussinesq equation, and many other equations can be formally derived as approximate equations for the two-dimensional water wave problem in the limit of long waves. Here we consider the classical problem concerning the validity of these equations for the water wave problem in an infinitely long canal without surface tension. We prove that the solutions of the water wave problem in the long-wave limit split up into two wave packets, one moving to the right and one to the left, where each of these wave packets evolves independently as a solution of a Korteweg-de Vries equation. Our result allows us to describe the nonlinear interaction of solitary waves. © 2000 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.