Abstract

Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms.

Highlights

  • Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition

  • Given their relatively small global areal extent, permafrost peatlands are disproportionately important to the future of global-scale ecosystem-climate feedbacks

  • We propose five distinct phases along a trajectory of degradation for permafrost peatlands (Fig. 4)

Read more

Summary

Methods

We identified three different peatlands in the Abisko region in different states of permafrost decay, despite being subject to the same climate: 1) desiccating bog albeit with largely intact permafrost; 2) recently thawed and partially collapsed area of peatland surrounded by fen; and 3) Arctic fen with no current permafrost and abundant thaw pools (Supplementary material 3 and 4). Five phase model for degrading permafrost peatlands in response to increasing temperature. The first phase (‘intact’) represents the only stable basin of attraction before climate-driven change alters the system state. Water-table depth data were standardised following[25]. The chronology of each core was based on 210Pb, AMS radiocarbon, spheroidal carbonaceous particles and tephrochronology (Supplementary material 6) and age-depth models were constructed using linear interpolation between dates (Supplementary material 7). For more detailed information on methods refer to Supplementary material 5

Author Contributions
Findings
Additional Information
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call