Abstract
Abstract We present hydrodynamic simulations of the Pegasus–Pisces Arch (PP Arch), an intermediate velocity cloud in our Galaxy. The PP Arch, also known as IVC 86-36, is unique among intermediate and high velocity clouds, because its twin tails are unusually long and narrow. Its −50 km s−1 line-of-sight velocity qualifies it as an intermediate velocity cloud, but the tails’ orientations indicate that the cloud’s total three-dimensional speed is at least ∼100 km s−1. This speed is supersonic in the Reynold’s Layer and thick disk. We simulated the cloud as it travels supersonically through the Galactic thick and thin disks at an oblique angle relative to the midplane. Our simulated clouds grow long double tails and reasonably reproduce the H I 21 cm intensity and velocity of the head of the PP Arch. A bow shock protects each simulated cloud from excessive shear and lowers its Reynolds number. These factors may similarly protect the PP Arch and enable the survival of its unusually long tails. The simulations predict the future hydrodynamic behavior of the cloud when it collides with denser gas nearer to the Galactic midplane. It appears that the PP Arch’s fate is to deform, dissipate, and merge with the Galactic disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.