Abstract

Nuclear reactions play a key role in the framework of the Big Bang Nucleosynthesis. A network of 12 principal reactions has been identified as the main path which drives the elemental nucleosynthesis in the first twenty minutes of the history of the Universe. Among them an important role is played by neutron-induced reactions, which, from an experimental point of view, are usually a hard task to be measured directly. Nevertheless big efforts in the last decades have led to a better understanding of their role in the primordial nucleosynthesis network. In this work we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the 3He(n,p)3H reaction after a detailed study of the 2H(3He,pt)H three–body process. The experiment was performed using the 3He beam, delivered at a total kinetic energy of 9 MeV by the Tandem at the Physics and Astronomy Department of the University of Notre Dame. Data extracted from the present measurement are compared with other published sets available in literature. Astrophysical applications will also be discussed in details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.