Abstract
The long-period Cepheid RS Pup is surrounded by a large dusty nebula reflecting the light from the central star. Due to the changing luminosity of the central source, light echoes propagate into the nebula. This remarkable phenomenon was the subject of Paper I.The origin and physical properties of the nebula are however uncertain: it may have been created through mass loss from the star itself, or it could be the remnant of a pre-existing interstellar cloud. Our goal is to determine the 3D structure of the nebula, and estimate its mass. Knowing the geometrical shape of the nebula will also allow us to retrieve the distance of RS Pup in an unambiguous manner using a model of its light echoes (in a forthcoming work). The scattering angle of the Cepheid light in the circumstellar nebula can be recovered from its degree of linear polarization. We thus observed the nebula surrounding RS Pup using the polarimetric imaging mode of the VLT/FORS instrument, and obtained a map of the degree and position angle of linear polarization. From our FORS observations, we derive a 3D map of the distribution of the dust, whose overall geometry is an irregular and thin layer. The nebula does not present a well-defined symmetry. Using a simple model, we derive a total dust mass of M(dust) = 2.9 +/- 0.9 Msun for the dust within 1.8 arcmin of the Cepheid. This translates into a total mass of M(gas+dust) = 290 +/- 120 Msun, assuming a dust-to-gas ratio of 1.0 +/- 0.3 %. The high mass of the dusty nebula excludes that it was created by mass-loss from the star. However, the thinness nebula is an indication that the Cepheid participated to its shaping, e.g. through its radiation pressure or stellar wind. RS Pup therefore appears as a regular long-period Cepheid located in an exceptionally dense interstellar environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.